
44 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Representing programs through algorithm animation,
typographic source-code presentation, and interactive auralization
transforms the hunt for bugs into a cognitively
accessible multimedia experience.

OFTWARE VISUALIZATION IS THE SYSTEMATIC AND IMAG-

inative use of the technology of interactive computer

graphics and the disciplines of graphic design, typog-

raphy, color, cinematography, animation, and sound

design to enhance the comprehension of algorithms

and computer programs [12, 13]. Here, we demon-

strate that graphical and auditory representations of

programs1 are useful in debugging and can enliven

and enrich programming as a cognitively accessible multimedia experience.

S
To illustrate these ideas, we present three visual-

ization approaches we have explored—algorithm
animation, typographic source code presentation,
and interactive auralization for debugging—demon-
strating the richness of software visualization media
and portraying design trade-offs inherent in their

use. We use a 30-minute film (designed to teach
nine sorting algorithms) to demonstrate the power of
algorithm animation. We show how the design and
typesetting of computer program source text can
enhance the program’s readability. And we show how
a programming environment we created—LogoMe-
dia—is useful for the interactive construction of
visualizations during program creation and
debugging.

Software Vi
for Debugging

1We use “visualization” in the sense of forming a mental image of something that
can be aided by graphical, auditory, and other sensory modalities.

Algorithm Animation:
How Does the Program Work?
Animation is a compelling medium for displaying
program behavior. Programs execute over time, so
they can be vividly represented through animation,
portraying how they carry out their processing
and how their essential state changes over that
time. A program’s state is determined by its
data, so one way to portray a program is to show
the data transforming over time. By viewing
these transformations, or several sequences
resulting from different sets of initial data, we
can perceive structure and causality, ultimately
inferring why and how the program is working
or not working.

Software visualization is a powerful tool for
presenting algorithms and programs and assist-
ing programmers and students struggling to
debug them. But animating algorithms is not a
trivial endeavor; to be effective, algorithm ani-
mation must abstract or highlight only those
aspects of a program essential at the moment.
Visualizations must enhance relevant features
and suppress extraneous detail; employ clear,
uncluttered, and attractive graphic design; and
use appropriate timing and pacing.

We demonstrated the power of this idea in our
1981 30-minute color and sound teaching film
Sorting Out Sorting [1, 2], which uses animation of
program data and an explanatory narrative to
teach nine internal sorting methods. The movie
has been used successfully with computer science
students in universities and high schools. Stu-
dents who have watched the animation carefully
can program the methods themselves and under-
stand the concept of efficiency differences
between n2 algorithms and those algorithms
whose execution time is proportional to n log n.

Assume, for example, we wish to sort an array
of numbers. We can portray each datum as a ver-
tical bar (see Figure 1), whose height is propor-
tional to the datum’s value. Initially, the heights

of adjacent items vary upward and downward. Suc-
cessive steps produce rearrangements of the data
until ultimately the elements are arrayed left to right
in order of increasing height.

The film deals with three insertion sorts, three
exchange sorts, and three
selection sorts, beginning
with insertion sorts, in

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 45

Ron Baecker, Chris DiGiano, and Aaron Marcus

sualization
Figure 1.

Linear Insertion

For each new item,
viewers scan the
array sorted so far,
looking for the
correct position;
when we find it, we
move all larger
items one slot to
the right and
insert the new
item. (a) First
comparison of the
fourth pass, with
the first four items
already ordered;
(b) final comparison
of the fourth pass;
(c) end of the
fourth pass, after
the fifth item has
been moved to the
front; (d) data has
been sorted. Green
denotes “unsorted”
red “sorted,” and
yellow borders
indicate that two
items are being
compared.

b

c

d

a

which successive items of data are inserted into their
correct positions relative to items previously consid-
ered. The movie introduces Linear Insertion (shown
in Figure 1), the simplest of the insertion sorts;
Binary Insertion; and Shellsort (see Figure 2).
Exchange sorts interchange pairs of items until the
data is sorted. The film demonstrates two n2

exchange methods, Bubblesort and Shakersort, and
one n log n method, Quicksort (see Figure 3). In
selection sorts, the algorithm selects one item in
turn and positions it in the correct final position.
The movie presents three such methods—Straight
Selection, Tree Selection, and Heapsort.

Animation Design Challenges. A problem for
viewers in early versions of the film was a lack of
consistent visual conventions. Viewers should be
able to forget about the technique of presentation
and concentrate instead on the content being taught.
Without an appropriate set of visual conventions,
such as one color to denote “sorted” items and
another for items “still to be considered,” they may
spend more energy trying to figure out what the pic-
ture means than trying to follow the algorithm.

Another central problem was timing. The steps of
the algorithms must first be presented slowly, giving
time for the narrator to explain what is happening
and for the viewer to absorb it. However, once the
algorithm is understood, later steps may be boring.

We needed a visually interesting and convincing
way to convey the concept of efficiency. We could
have used animated performance statistics, but if we
wanted to show the algorithms operating on large

amounts of data, we would have had new representa-
tion problems. Fitting the desired information legi-
bly onto the screen and compressing the animation
into a reasonable time span required designing new
methods of portraying the data and illustrating the
algorithm’s progress.

More generally, we were faced throughout the film
with the problem that totally literal and consistent
presentations can be uninteresting. Yet consistency
is required so changes made for visual purposes are
not interpreted falsely as clues to understanding the
algorithm. Being literal and explaining things step
by step are required to aid initial understanding, but
we also had to add dramatic interest as we presented
more advanced material.

Design Solutions. Presenting nine algorithms,
grouped into three groups of three, lent itself to a
pleasing symmetry. Within each group, we adopted

a different set of visual cues
while retaining the same
underlying conventions.
Thus, in each group, one
color indicates items “yet to
be considered;” a second
color, items “already
sorted;” and a third, borders
around items currently
being compared. Whenever
items are dimmed and
faded into the background,
they are “not currently
being considered” within
the context of the algo-
rithm.

Only the data appears on
the screen. There are no
pointers, no labels, no gim-
micks. Attributes of the
data and the algorithm are

46 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 2. Shellsort
Shellsort performs insertion sorts on subsequences
of the data spaced widely apart, quickly moving items closer
to their ultimate destination. It then performs insertion sorts on
subsequences of the data spaced more closely together. It continues
this way until it finally performs a linear insertion sort as the last
pass. Because items are already close to where they belong, this
sort is very efficient. The two frames show the beginning and end
states of the first pass, which performs an insertion sort on a
subsequence of the data consisting of every fifth item.

Programs execute over time, so

they can be vividly represented

through animation, portraying how

they carry out their processing

and how their essential state

changes over that time.

conveyed entirely by these clues, and by the motion
of the data, the accompanying narrative, and to a
lesser extent the music track, which is not directly
driven by the data but conveys the feeling of what is
going on. Where necessary, the pace of the sort was
slowed to allow time for complex narration and for
viewers to digest what is going on. The pace is some-
times speeded up to avoid boredom after the initial
explanatory passes.

After presenting all three algorithms of each class,
we illustrate their efficiency with line graphs show-
ing numbers of data comparisons and movements
and total execution time for sorts of n items, where n
ranges from 10 to 500 items. The three graphs dis-
tinguish clearly the n log n from the n2 algorithms.

Illustrating algorithm efficiency more dramatically,
we then run a “race” of all three techniques on the
screen, sorting 250 items of data. Each algorithm is
accompanied by a digital clock measuring film time,
stopping as soon as the data is sorted, as in Figure 3.
Each algorithm’s title appears as soon as its data is
sorted. The slowest algorithms take more than 2
minutes, while the n log n sorts finish in 5 to 15 sec-
onds.

We close with a “grand race” of all nine algorithms,
sorting 2,500 items of data each (see Figure 4). Each
item of data is represented by a colored dot. The
value of the item is represented by its vertical loca-
tion and its position in the array by its horizontal
location. Unsorted data appears as a cloud and sorted

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 47

Figure 3.
The race of the
three exchange

sorts

(a) The
Quicksort
completes

after roughly
7 seconds;

(b) the Shaker-
sort takes

more than 1
minute and

40 seconds to
approach

completion; (c)
Shakersort

completes at 2
minutes

and 21
seconds; (d)
the Bubble-

sort completes
at just over 2

minutes and
45 seconds.

(Bubblesort
works from

the top down;
Shakersort
works from

both the top
and the

bottom.)

Figure 4. Sorting Out Sorting’s grand race
Unsorted data appears as a cloud; sorted
data are the diagonal line. The differences
between the n log n sorts—Shellsort,
Quicksort, Treesort, and Heapsort—and
the n2 sorts are visible. Notice Shellsort’s
pushing of the data toward the line,
Quicksort’s recursive subdivisions, and
Heapsort’s strange data funnel.

a

b

c

d

data as a diagonal line.
Tree Selection and Quicksort finish in

20 seconds each, the other n log n algo-
rithms within another 20 seconds. Their
sorted data then fades out while the n2

sorts plod along during the final credits
and then also fade out. This final fadeout
happens long before they are finished,
since it would take another 54 minutes
for Bubblesort to complete.

The grand race also illuminates how
the algorithms operate. We see how
Shellsort moves all the data items close
to their final positions, then finishes the
job on the final pass. We see the recur-
sive behavior of Quicksort as it picks up
rectangular regions of the array and
squashes them into a line. We see the
peculiar way Heapsort organizes and
shapes the data into a funnel as it picks
off the successive largest remaining ele-
ments.

The film’s 2-minute-30-second Epi-
logue is an opportunity for review by
replaying the entire film at 12 times
normal speed, thereby generating visual
patterns unique to each method and not
obvious at normal speed.

The film goes beyond a step-by-step
presentation of the algorithms, commu-

48 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 5. Page 1 of a designed and typeset program [3]

Output is on looseleaf 8.5x11 inch pages, each
separated into four regions—header (1),
footnote area (17), main text column for code
and most comments (3, right), and marginalia
comments (3, left). Each file is a separate
“chapter” with the filename as a large, bold
title (2). Extra white space separates prologue
comments and code (5), function definitions
and declarations (10), individual function
definitions, and header and body of function
definition (14). Cross-references relating uses
of global variables to their definitions are
footnotes to the source text (17).

Each file may include a prologue comment
describing the module’s purpose (4) in a serif
font on a light gray background. Marginalia
comments on the same lines as source code are
in a small-size serif font in the left column
(9, left).

Introductory text of a function definition—
the function name—is a “headline” in large

sans serif type (11). A heavy rule is under the
introductory text of a function definition
(12). A light rule is under the declaration of
formal parameters (13).

Declared identifiers are aligned to an
implied vertical line at an appropriate
horizontal tab position (7). Initializers are at
reasonable tab positions, and programmer
carriage returns are respected as requests for
“new lines” (8).

Systematic syntax-directed indentation and
placement of keywords are employed (15). Since
curly braces are redundant with systematic
indentation, the user may suppress them (15). In
conventional program listings, it is impossible,
without turning the page, to tell where a
particular control construct (in this case,
the for) continues on the following page. Our
solution is an ellipsis, in line with the for,
signifying the first statement on the next page
is at the same nesting level as the for (16).

nicating an understanding of them as dynamic
processes. Seeing the programs in process, running,
we see the algorithms in new and unexpected ways.
We see sorting waves ripple through the data. We
see data reorganize itself as if it had a life of its own.
These views produce new understandings difficult
to express in words.

Sorting Out Sorting [1] (600 copies sold over the
past 15 years) encapsulates in 30 minutes of anima-
tion the essence of what written treatments require
30 or more detailed pages to convey. Interviews with
students and an informal, unpublished experiment
make clear that the film communicates both the sub-
stance of the algorithms and the concept of their rel-
ative efficiency.

The film was also instrumental in stimulating fur-
ther work in algorithm animation, most notably by
Marc Brown [4], who together with Sorting Out Sort-
ing has inspired much of the work in the field. The
project also taught us many lessons about algorithm
animation, including:

• Significant insights into algorithm behavior can
be gained only by viewing the data—if the illus-
trations and the timing are carefully designed and
accompanied by appropriate narration.

• Timing is the key to effective algorithm anima-
tion; fancy rendering and smooth motion are not
required.

• Straightforward techniques of algorithm anima-
tion aid program understanding and therefore
should be useful for debugging.

Source Code Presentation:
How Should Programs Look?
To debug a program, one must also view and think
about source code from different perspectives. We
therefore developed techniques for enhancing source
code readability and comprehensibility [3, 13].

Program appearance has changed little since the first
high-level languages were developed in the 1960s.
Unlike symbolic systems, such as circuits, maps,
mathematics, and music, we lack sophisticated nota-
tions and conventions employing the tools of design
and typography, such as typefaces, weights, point
sizes, line spacing, rules, gray scale, diagrams, and pic-
tures. Knuth [7] expressed the challenge eloquently:

I believe that the time is ripe for significantly better
documentation of programs, and that we can best achieve
this by considering programs to be works of literature.
Hence, my title: ‘Literate Programming’ . . . Let us change
our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a

computer what to do, let us concentrate rather on explain-
ing to human beings what we want a computer to do.

Our work has sought to demonstrate and explain
how communication about and comprehension of
programs can be aided by improving the visual
schema and appearance of the programs.

To illustrate, Figure 5 is the first of two pages of a
typical short C program that prints an alphabetic
equivalent of a numerical phone number.2 We
explain our design’s salient features with reference
numbers, so, for example, (1) and (17) refer to the
small numbers in circles in the right margin of the
program page.

At first glance, it may seem we are talking only
about “prettyprinting,” but our approach goes sig-
nificantly beyond prettyprinting in several ways:

• We realized that rich typographic representations
with many degrees of freedom allows source code
presentation qualitatively different from that of
conventional prettyprinting.

• We developed graphic design principles for soft-
ware visualization and applied them to program-
ming languages.

• We developed experimental variations in an itera-
tive graphic design process to help us derive
design guidelines and conventions for program
appearance.

• We formalized these guidelines and specifications
in a graphic design manual for C program
appearance.

• We developed a flexible experimental tool, the
SEE visual compiler, to automate production of
enhanced C source text. SEE was highly paramet-
ric, allowing easy experimentation with novel
variations to suit the style preferences of
programmers.

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 49

2Because this research began in 1982, we focused on paper listings for output. The
same approach and principles apply to program formatting for interactive use on
workstations.

We see sorting waves ripple

through the data. We see data

reorganize itself as if it had

a life of its own. These views

produce new understandings

difficult to express in words.

• We enlarged our scope from the narrow issue of
formatting source code to a broader concern with
programs as technical publications. We consid-
ered the entire context in which code is used,
including the supporting texts and notations that
make a program a living piece of written commu-
nication. Therefore, to help programmers master
software complexity, we developed proposals for
designing, typesetting, printing, and publishing
program books. We also integrated bodies of pro-
gram text and metatext and incorporated displays
of essential program structure, called program views.

Program books are needed because typical source
text does not itself have sufficient communicative
depth. A large real program is an information nar-
rative in which the components should be arranged
in a logical, easy-to-find, easy-to-read, easy-to-
remember sequence. The reader should be able to
quickly find a table of contents to the document,
determine its parts, identify desired sections, and
find their locations. Within the source text, the
overall structure and appearance of the page should
furnish clues regarding the nature of the contents.
For example, headers and footnotes should reinforce
the structure and sequencing of the document.

To illustrate these concepts, Figure 6 consists of four
miniature pages from a prototype program book (see
also [10, 11]) based on Henry Spencer’s implementa-
tion of Joe Weizenbaum’s Eliza program.

In developing the concept of the program book,
we applied the visible language skills of graphic
design, guided by the metaphors and precedents of
literature, printing, and publishing, to demon-
strate that program text should and can be made
perceptually and cognitively more accessible and
usable. Future generations of students and pro-
grammers should be able to read the great works of
programming literature, such as a Unix kernel, a
Logo interpreter, and a program by Knuth, all type-
set in beautiful editions and accessible from a stu-
dent’s physical or virtual bookshelf.

Enhanced program presentation produces listings
that facilitate the reading, comprehension, and
debugging of the programs. See [3, 10, 11] for
theory and experiments3 suggesting that making
the interface to a program’s source code and docu-
mentation intelligible, communicative, and
attractive ultimately leads to significant produc-
tivity gains.

Interactive Visualization for Debugging:
How Does a Program Sound?
For program presentations to be useful in debug-
ging, they cannot always be “canned” by visualiza-

50 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 6. Miniatures of sample pages from a C program book of a new implementation of Eliza [3]
(a) The book’s cover page, including title, authors, and an illustration.
(b) The authors and personalities page, including key people in the program’s
development and maintenance.
(c) A table of contents page showing the top-level structure of the Eliza book.
Chapter 1 is user documentation; Chapter 2 is a series of diagramatic and graphical
overviews of Eliza; Chapter 3–Chapter 10 is Eliza source text; Chapter 11 is
programmer documentation; and Chapter 12 is a series of indices to Eliza.
(d) The first of two table of contents pages showing the Eliza source text; each
file appears as a separate chapter.

a b c d

3For example, in our study of third-year programming students in which we com-
pared SEE program listings with conventional listings on 200-line programs, the
enhanced source code presentation increased the programs’ readability by 21% as
measured by the subjects’ performance on a comprehension test (p < 0.001).

tion designers but must be constructed opportunisti-
cally by software developers. To demonstrate the easy
interactive specification of custom presentations, we
developed a Logo programming environment called
LogoMedia [6].

LogoMedia facilitates the visualization of programs
with sounds as well as images. Connected to a musi-
cal instrument digital interface (MIDI) synthesizer,
it can be used to orchestrate acoustic feedback [8]

that informs programmers of key control and
dataflow events. Audio has been used in software
visualization (e.g., [5]) to augment, enhance, or
replace graphical or textual portrayals for several
reasons:

• While attending to auralizations, programmers
are free to interact simultaneously with the graph-
ical interface (e.g., by scrolling through code list-

ings, inspecting
output win-
dows, or editing
bug lists).

• As a modality
distinct from
the typically
visual output of
today’s pro-
grams, audio
can provide pro-
grammers with
debugging and
profiling feed-
back without
disturbing the
integrity of the
graphical inter-
face.

• Sound may be a
more salient

representation for certain types of
program information than graphi-
cal forms. Two examples include
repetitious patterns in control flow
and nonlinear sequences of variable
values.

• As a new output modality comple-
menting the visual interface, audio
offers an attractive design solution
for programming on smaller
devices with limited screen space,
such as personal digital assistants.

Audio Probes. Audio renditions, or
“auralizations,” of LogoMedia pro-
grams are specified via “probes” pro-
grammers attach to their source code
unobtrusively, that is, without modi-
fying the code. Programmers can
configure or design probes to turn on
synthesized musical instruments,
play back sound samples, or adjust a
sound’s pitch or volume. LogoMedia
supports two types of probes: control

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 51

Figure 7. A LogoMedia code window containing a buggy Fibonacci procedure
and three audio control probes

The pop-up menu icons for LogoMedia’s four probe types are
at the top of the window. The three probes on the left
margin of the code are associated with the lines in the
Fibonacci procedure4 they are monitoring. For example, the
two symbols and the word “:guitar” denote that a guitar
note is associated with each call to fibonacci. Here, the
programmer is using the default control probe action,
which is to play a note mapped to the depth of recursion
(the deeper the recursion, the lower the pitch). The other
two control probes in the figure play unmapped sounds
when execution reaches the first and second output
statements. (A Logo output command terminates the
procedure call.) When fibonacci is run, the programmer
hears a rapid series of guitar notes of decreasing pitch as the
program calls itself recursively on decreasing values of num.
A bird tweet is then heard, indicating that the argument for
one of the calls has reached 0. However, because of a bug in
the procedure (the second base case should check for a value
of 1, instead of 0), the guitar notes continue playing
indefinitely without the cymbal sounding.

4The last few lines of this example could be expressed more elegantly using the statement output sum
fibonacci difference :num 1 fibonacci difference :num 2. However, the interme-
diate values a and b are useful for illustrating auralization techniques.

probes for monitoring execution flow and data probes
for tracking variable values. A graphical interface
was designed to make it easy to attach these probes
to running programs.

Programmers install control probes by selecting
expressions they wish to monitor in one of LogoMe-
dia’s code windows (see Figure 7) and then choosing
probes from a pop-up menu at the top of the win-
dow. The menu options specify which MIDI instru-
ments or effects to turn on or off prior to executing
a line of code. In addition to the audio probe, Logo-
Media offers other probe types that provide a consis-
tent interface for creating graphical feedback as well
audio. These include graphics probes for assisting
animation, text probes for printing tracing mes-
sages, and “generic” probes that allow users to exe-
cute their own Logo expressions for generating
completely customized visualizations. Three exam-
ples of audio probes for debugging a program to
compute the Fibonacci series are
shown in Figure 7.

In addition to using control
probes, programmers can install
data probes for monitoring the
values of variables through a
Probe Sheet window (see Figure
8). In the Probe Sheet, program-
mers enter arbitrary Logo expres-
sions as “triggers” for audio
feedback. Probes can then be
linked to the triggering expres-
sions using pop-up menus. Like
control probes, data probes can
generate MIDI notes and/or
adjust properties of sounds
already being played. These
actions occur whenever a probe’s
triggering expression is modified.
Figure 8 shows two audio data
probes for monitoring variables
in the Fibonacci program.

User Evaluation of LogoMedia.
We conducted an observational
ethnographic study to observe
how programmers could make use of sound while
coding and debugging and to gain feedback on
LogoMedia’s interface for specifying auralizations.
Three study subjects—with modest Logo or Lisp
programming experience and varied musical back-
grounds—participated in a series of three sessions,
each lasting approximately two hours. The first ses-
sion was a review of basic Logo programming con-
structs and an introduction to LogoMedia’s audio

probes. In the second session, subjects composed
procedures for the Game of Life population simula-
tion algorithm invented by John H. Conway; they
then used sound to help evaluate their code. Finally,
in the third session, subjects were asked to fix a dif-
ferent implementation of Life and encouraged to use
auditory feedback for debugging purposes. A think-
aloud protocol was used to elicit comments from
subjects as they worked.

We were particularly interested in how subjects
would use sound in their “test runs,” that is, Logo
evaluations that checked for bugs or tested a theory.
On average, the subjects conducted 43 such test runs
per session; in 55% of them, they used auditory
feedback. Without explicit suggestions from the
experimenter, they developed a variety of interesting
ways to extract information from the test runs.

Subjects generated audio feedback via control and
data probes in order to complement visual feedback,

identify errors in the code, and verify their bug fixes.
They chose “iconic” sounds, such as an explosion and
a bell, to denote important events, such as the birth
or death of a game piece. More musical sounds, such
as that of a piano, were used to indicate such ongo-
ing events as traversal of the simulation game board.

Audio control probes were used heavily by subjects
to test whether execution reached a certain part of
their code and to help answer other fine-grained flow

52 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 8. The LogoMedia Probe Sheet and two audio data probes
The first data probe causes a piano note to play when the
Logo variable “a” changes; the second generates a saxophone
sound when the sum of “a” and “b” changes. These data
probes play descending series of piano and saxophone notes
as the arguments to recursive calls to fibonacci are
decremented. These audio cues might help the programmer
realize that the problem is not that the decrement
operations are failing but that the second base case
is flawed.

control questions. To assess the values of variables at
particular points in programs, they installed audio
control probes at these points to map characteristics
of the data to pitch; subjects also used audio data
probes to monitor arbitrary changes to variables by
mapping their values to sound. Trends were evident
when state changes occurred rapidly in some pat-
terned way. Subjects also used data probes to moni-
tor acoustical variables, such as loop indices, lists,
and counters (e.g., for the numbers of neighboring
pieces in a region of Life’s board). While listening to
their programs execute, subjects took advantage of
their unburdened visual processing abilities to
manipulate the graphical interface. Listening activi-
ties included scrolling through code, manipulating
windows, and adjusting the audio portrayal.

Just as the timing of visualizations was important
for students learning from Sorting Out Sorting, the
speed of auralizations was critical for subjects trying
to make sense of acoustic feedback. Typically, they
would create audio probes, run a program, adjust the
speed of execution using LogoMedia’s speed con-
troller, and then run the program again. Full execu-
tion speed seemed suitable for noticing general
trends, as when subjects were tracking down infinite
loops and wanted to know which procedures were
running too long. However, when the relative pitch
was more important, subjects tended to slow execu-
tion by a factor of two or more in order to hear
changes from one value to the next more distinctly.
One subject seemed to consider execution speed very
important; on average, he adjusted the speed con-
troller once every four test runs in the final two-hour
session.

Subjects, on their own initiative, began developing
an acoustic vocabulary for describing their running
programs. For example, one said a loop in his pro-
gram was “clicking.” Another, when describing a
procedure he had just fixed for calculating the next
generation in Life, commented that it “sounds like
it’s counting right now.”

Subjects also encountered a few problems with
LogoMedia’s auralization facilities. For example,
sometimes they wanted to track the dataflow in the
program, but because of the functional nature of
Logo, the datum they wished to monitor was not
represented by a variable and could not be entered in
the Probe Sheet. They worked around this limitation
by assigning the results of Logo expressions to tem-
porary variables.

Another problem was avoiding cacophony. Sub-
jects complained that certain simultaneous sounds,
such as the piano and the guitar, tended to merge
into one. Even when more distinctive sounds were

used, such as the piano and the explosion, too many
audio probes tended to cause confusion. Future ver-
sions of LogoMedia should allow users to temporar-
ily disable probes to reduce noise. Subjects also
suggested that LogoMedia offer more specific
domain-oriented sounds and allow them to play back
their own voices.

Because there were only three subjects, our results
are suggestive, not definitive. Yet several incidents
suggest that audio feedback was more than a novelty
for these users. For example, after identifying the
missing loop index incrementer in Life, one subject
said, “That was neat. That was very helpful. I think
if I hadn’t had the sound, I would still be banging
away at this.”

More subtle but perhaps more convincing evidence
can be seen in how all three subjects reacted to the sys-
tem failures that caused their audio probes to be lost.
This happened five times during the study, at least
once to each subject. In four cases, the subjects elected
within 5 minutes of LogoMedia’s being restarted to
reinstall the probes almost identically to the way they
were before the failure—without prompting from the
experimenter or the written instructions.

Conclusions
The three software visualization approaches
described here are useful for debugging. Carefully
crafted algorithm animations can show how pro-
grams work; enhanced typographic representations
can improve the readability and comprehensibility of
source code; and an interactive environment can let
programmers specify software visualizations, includ-
ing audio portraits of running programs.

A number of implications for the design of debug-
ging technology can be derived from our work:

• The need for graphic design expertise in develop-
ing visualization technology;

• The importance of variety, cleanliness, and sim-
plicity in the choice of visual representations;

• The desirability of using sounds as well as
images;

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 53

Effective representation and

presentation aid thought, the

management of articulate

expression and complexity, and

problem solving.

• The importance of speed controls for program
playback;

• The desirability of being able to attach debug-
ging probes unobtrusively to source code; and

• The need for tools for enhanced static display of
source code and for dynamic display of program
execution.

These tools must be powerful enough so programmers
can configure effective special-purpose visualizations
with little effort in response to particular bugs.

Debugging environments can usefully employ visu-
alization tools and techniques. To develop what is
needed, computer science must learn and apply the les-
son that graphic design (see [9]) teaches so vividly:
Form matters and is not just an issue of aesthetic
appeal. Effective representation and presentation aid
thought, the management of articulate expression and
complexity, and problem solving. As debugging is a
particularly challenging form of problem solving, soft-
ware visualization should play an increasingly impor-
tant role in future programming environments.

Acknowledgments
Many individuals, all acknowledged in [2, 3, 6],
contributed to this research. We are especially grate-
ful to Michael Arent, Ilona Posner, Hugh
Redelmeier, Alan J. Rosenthal, and David Sherman
and to the Advanced Research Projects Agency
(U.S.) and the Natural Sciences and Engineering
Research Council (Canada) for financial support.

References
1. Baecker, R.M. (assisted by Sherman, D.) Sorting Out Sorting, color/sound

film, University of Toronto, 1981. Distributed by Morgan Kaufmann,
San Francisco.

2. Baecker, R.M. Sorting Out Sorting: A case study of software visualization
for teaching computer science. In Software Visualization: Programming as a
Multimedia Experience, J. Stasko, J. Domingue, M. Brown, and B. Price,
Eds. MIT Press, Cambridge, Mass., 1997.

3. Baecker, R.M., and Marcus, A. Human Factors and Typography for More
Readable Programs. ACM Press, Addison-Wesley, Reading, Mass., 1990.

4. Brown, M.H. Algorithm Animation. MIT Press, Cambridge, Mass., 1988.
5. Brown, M.H., and Hershberger, J. Color and sound in algorithm anima-

tion. IEEE Comput. 25, 12 (1991), 52–63.
6. DiGiano, C.J. Visualizing program behavior using non-speech audio. M.S.

Thesis, Univ. of Toronto, 1992.
7. Knuth, D.E. Literate programming. Comput. J. 27, 2 (May 1984), 97–111.
8. Kramer, G., Ed. Auditory Display: Sonification, Audification, and Audi-

tory Interfaces. Addison-Wesley, Reading, Mass., 1994.
9. Marcus, A. Graphic Design for Electronic Documents and User In-

terfaces. ACM Press, New York, and Addison-Wesley, Read-
ing, Mass., 1992.

10. Oman, P.W. and Cook, C.R. The book paradigm for improved
maintenance. IEEE Software (Jan. 1990), 39–45.

11. Oman, P.W. and Cook, C.R. Typographic style is more than
cosmetic. Commun. ACM 33, 5 (May 1990), 506–520.

12. Price, B.A., Baecker, R.M., and Small, I.S. A principled tax-
onomy of software visualization. J. Visual Lang. Comput. 4, 3
(Sept. 1993), 211–266.

13. Stasko, J., Domingue, J., Brown, M., and Price, B., Eds. Soft-
ware Visualization: Programming as a Multimedia Experience. MIT
Press, Cambridge, Mass., 1997 .

Ron Baecker (rmb@dgp.toronto.edu) is Professor of
Computer Science, Electrical and Computer Engineer-
ing, and Management, and Director of the Knowledge
Media Design Institute at the University of Toronto.
Chris DiGiano (digi@acm.org) recently earned a
Ph.D. in computer science from the University of
Colorado at Boulder.
Aaron Marcus (Aaron@amanda.com) is President of
Aaron Marcus and Associates, Inc., Emeryville, Calif., a
user interface design and development firm.

Permission to make digital/hard copy of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to repub-
lish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© ACM 0002-0782/97/0400 $3.50

c

54 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

